

SepaBean[™] Automated Flash Chromatography System

Features of the SepaBean[™] Flash System

• Wireless Operation Through Mobile Devices The flexible wireless control method is especially suitable for separation experiments that need to be protected from light or placed in an isolator.

Column holder with touchpad could achieve

automatic fixing of the flash column.*

The built-in power-off recovery function in

the software minimizes the loss caused by

Power Failure Recovery

accidental power failure.

• Separation Method Recommendation The software has built-in separation method database that automatically recommends the most appropriate separation method based on the key information entered by the user, thereby improving work efficiency.

Fraction Collector

Smart Column Holder

Tube racks with LCD display enable users to easily track the tubes containing collected fractions.

 Local Network Data Sharing Multiple instruments could form a local area network to facilitate internal data sharing and resource optimization in the laboratory.

RFID Technology

Automatic identification of current flash column information based on RFID technology, facilitating the use and maintenance of the columns.

• 21-CFR Part 11 Compliance The control sofware complies with FDA requirements for system safety (21-CFR Part 11), making the instrument more suitable for pharmaceutical R&D companies and laboratories.

*Smart column holder is not applicable for SepaBean™ machine U. **RFID module is not applicable for SepaBean™ machine U or T.

3

Smart purification system makes the purification easier

The smart, automated flash chromatography system SepaBean[™] by Santai Technologies has the built-in feature of separation method recommendations. Even beginners or non-professional chromatography operators can easily complete complex purification tasks.

Smart purification with "Touch & GO" simplicity

SepaBeanTM can be operated through a mobile device, with it's iconized UI. Simple enough for a novice to complete a routine separation, but also sophisticated enough for professionals to complete or optimize a complex separation.

Built-In Method Database — Knowledge Retained

Researchers around the world spent numerous resources to develop methods of separating and purifying compound mixtures. Whether it's synthesized mixtures, or extracts from natural products, these valuable methods are usually stored in a single location, isolated, disconnected, and become an "information island" over time. Unlike traditional flash instruments, the SepaBean[™] employs database and distributed computing technology to retain and share these methods across secured organizational network:

- The SepaBean[™] system has a built-in relational database to store separation methods, researchers can query existing or update a new separation method simply by using the compound name, structure, or project code.
- SepaBean[™] is network ready, enabling multiple instruments within an organization to form a private channel. Separation methods can be shared across the entire organization and authorized researchers can access and run these methods directly without having to re-develop the methods.
- The SepaBean[™] instrument can discover and connect to a peer instrument automatically. Once multiple instruments are connected, data is automatically synced, allowing researchers to access their methods in any connected instrument from any location.

I Unique "SepaBean™ Approach" Delivers the "SepaBean™ Advantage" The SepaBean™ three step procedure:

STEP 1

Join the SepaBean[™] instrument to a local area network (LAN) with or without internet access. Multiple SepaBean[™] instruments will be autoconnected and automatically synchronized with data.

STEP 2

Create user account for researchers before operating the SepaBean for the first time.

PH T		27904 Normal -phase separ		6m
😅 Normal Share association				
Sample Info	Project NO.	ADH-1866	Q	
	Target Comp	bund		
TLC Info	CAS			
 Settings 				
Pre-separation	Name	5-(5-fluoro-1-((1-methylcyclopent		
Separation Run	Formula	and a		
	Starting com	sound1		
	CAS			
	Name	6-chloro-5-(5-fluoro-1-((1-methyl		
	Formula	متحم	⊕	
nstrument connected: SPB-181156	Avail	able for your company	Available only for yourself	

STEP 3

Fill in compound information before separation, including key starting materials if the compound is synthesized.

I The "SepaBean™ Advantage"

- Every single method and related data which researchers have spent resources on developing is retained in the database and searchable across the entire authorized network. These methods and related data become valuable assets of the organization, including information of all the compounds synthesized and purified over the years.
- Simply input compound information, such as name, CAS #, or structure. Previous matched or similar methods will pop up, and you can follow the method to finish a separation, or start a new one so that other researchers can benefit from.
- Non-interrupted separation If the SepaBean[™] was interrupted or replaced, you can continue the run in another SepaBean[™] instrument. Just install the interrupted flash column and test tube rack in any connected SepaBean[™] machine, log in, and continue from where you left off.

TLC-to-Gradient

Now, with the new feature of our TLC-to-Gradient built in the control software of SepaBean[™], the whole sample preparation procedure is greatly accelerated. The user only needs to input the TLC information and the loading amount of the sample and the software will automatically recommend the proper flash column for the separation. Also, the optimized elution gradient will be generated, significantly improving your work efficiency.

Pad 🗢		±≄⊧os Normal -phase separation		61% 🖛	eas ♥ L≋sos Normal -phase separation	
😅 Normal optices separate	SolventA:	Hexane	80%	Solvent A is weaker in polarity	Total sample 10.0 mg Total sample 10.0 mg	Unit m
Sample Info	SolventB:	Ethyl acetate	20%	Solvent B is stronger in polarity	Sample Info Flash column IS-8101-0012 Flow rate 30 ml(min	Auxiliary
FLC Info						
Pre-separation					Pre-separation Collection Threshold Thres	
eparation Run					Separation Run	
	RF1:	0.5			Collection 10 ml	
	RF2:	0.4	0		Tube racks Auto	
	RF3:	0.3		①	Starting tube tack Tube racks 1 V	
strument connected SPB-181156	t:	The complete TLC information will help to gen nethod, or you can skip it and set the gradien	erate gradient t manually.	elution	Starting tube 1	
SPB-181156		Previous		Vext	SP8-181156 Previous Next	

HPLC-to-Gradient

For reversed-phase separation, the control software of the SepaBean[™] can also help the user with smart recommendations. Input the analytical HPLC information, including the retention time of the sample, the percentage of solvent B when specific component is eluted out, the peak area of the target product and the primary impurities, as well as the elution gradient will be automatically generated.

iPad 🗢	上午9:06	61% 🔳 🔅	iPad 🗢	上年9:07	61% 1
1	Reversed -phase separation	S	the second se	Reversed -phase sep	aration
🤹 baaraal abaar ayaaalaa	Analytical column HPLC C18		Browned shake aspect		tal sample weight 10 mg Unit mg
Sample Info	Solvent A: Water 👻		Sample Info HPLC informat	Flash column ISW-5231-025-SP 💌	Flow rate 15 ml/min Auxiliary OFF
Settings	Solvent B: Methanol		Settings	UV1 (Collection) 254 nm	UV2 fonitoring) 280 nm
Pre-separation			Pre-separation	Collection Threshold V	Threshold 10 mAu
Separation Run			Separation Run		
	В%			Collection volume 10 ml	
	Rt1: 3 min 20%	Area16 10 60 30		volume	
	Rt2: 5 min 60%			Iube racks Auto	
	Rt3: 7 min 70%			Starting tube tack Tube racks 1	
				Starting tube 1	50
strument connected: SPB-181156	1	8%	Instrument connected SPB-181156		Time (Min)
2	Previous	Next		Previous	Next

These collection methods are supported: all,

threshold, slope, time, and waste.

Streamlined Operation

The simple parameter setting as well as the clear interface enables the user to easily understand and operate.

Real-time Parameters Modi ication During Run

During separation running, the separation parameters can be modified at any time, including flow rate, gradient, collection volume, threshold value for collection, etc.

• Flash Column Recommendation The most proper flash column could be recommended according to the key sample information.

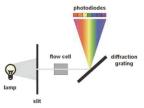
Gradient Hold

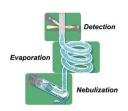
Collection Methods

The elution gradient could be hold during the separation procedure to improve the resolution of the components.

History Records

The history records of the current user's experiments could be reviewed at any time.


Detectors


Variable Dual Wavelength Diode Array Detector (DAD)

- Suitable for detecting the compounds with UV or visible light absorption.
- Built-in feature of full wavelength scanning for the easy determination of the maximum absorption wavelength of the sample, contributing to higher detection sensitivity and lower sample loss.
- Review of full wavelength scanning data in the history records could help the user evaluate the purity of the product, making the separation results more reliable.

Evaporative Light Scattering Detector (ELSD)

• Universal detector with high sensitivity, commonly used for analysis of compounds where UV detection might be a restriction and therefore compounds don't efficiently absorb UV radiation, such as sugars, lipids, polymers, fatty acids, amino acids, and more.

8

Choose the SepaBean machine that's right for you

	-	SenaBean™ moshine T			
Model	SepaBean™ machine L	SepaBean™ machine T	SepaBean™ machine	SepaBean™ machine 2	
Description	High flow-rate model for large volume sample purification. Up to 300 grams in a single run. Binary gradient with any combination of two solvents.	Cost effective model with all features of SepaBean control software. Binary gradient with any combinations of two solvents. Optional ELSD to cover more types of samples.	Standard version. Binary gradient with four solvent lines, high pressure mixing. Optional ELSD to cover more types of samples.	Medium pressure model which could perfectly match with Purity High Pressure spin-welded columns for higher separation efficiency. Binary gradient with any combinations of two solvents, third solvent as modifier, able to run complex separation conditions. Optional ELSD to cover more types of samples.	
Flow Range	50 - 1000 mL/min	1 - 200 mL/min	1 - 200 mL/min	1 - 300 mL/min	
Maximum Pressure	150 psi (10.4 bar)	200 psi (13.8 bar)	200 psi (13.8 bar)	500 psi (34.5 bar)	
Pumping System	Highly accurate, maintenance free ceramic pump	Highly accurate, maintenance free ceramic pump	Highly accurate, maintenance free ceramic pumps	Highly accurate dual piston pumps	
Gradient	Four solvents binary with any combinations of two solvents	Four solvents binary with any combinations of two solvents	Four solvents binary, high pressure mixing	Four solvents binary with 3rd solvent as modifier	
Detector	Fixed wavelength (254 nm, optional other wavelength) or DAD variable UV (200 - 400 nm) or DAD vairable UV (200 - 400 nm) + Vis (400 - 800 nm)	DAD variable UV (200 - 400 nm) or DAD vairable UV (200 - 400 nm) + Vis (400 - 800 nm) or ELSD	DAD variable UV (200 - 400 nm) or DAD vairable UV (200 - 400 nm) + Vis (400 - 800 nm) or ELSD	DAD variable UV (200 - 400 nm) or DAD vairable UV (200 - 400 nm) + Vis (400 - 800 nm) or ELSD	
Sample Loading Capacity	8 g - 300 g	10 mg - 33 g	10 mg - 33 g	10 mg - 33 g	
Column Sizes	800 g - 3 Kg	4 g - 330 g, up to 3 kg with adapters	4 g - 330 g, up to 3 kg with adapters	4 g - 330 g, up to 3 kg with adapters	
Other Specifications	• Erection collection method: all waste threshold along time				

Applications The Purification of Poryphins

Since porphyrins can easily form 1:1 coordination compounds with metal ions. Therefore, porphyrins are widely used in the biophotosynthesis simulation, solar cells, organic electroluminescence, photoconductive materials, as well as research and development for anti-tumor drugs.

Instrument	SepaBean™ Automate	ed Flash System	BuS_SBu
Cartridges	40g Purity Flash Cartrid Premium Rf (70Å, 20-4 Cat.#: CFC-72600-040		$\begin{array}{c c} CN & SBu \\ CN & SBu \\ CN & SBu \end{array} + \begin{array}{c c} CN & Mg,n-butanol,I_2 \\ \hline \\ CN & TFA,Dark,Stir \end{array} \\ \begin{array}{c c} O_2N & & & \\ O_2N & & & \\ NH & HN \\ SBu \\ N & & \\$
Wavelength	254 nm (detection), 365 nm (monitoring)		CN SBu CN TFA,Dark,Stir
Mobile Phase	Solvent A: N-hexane S ane	olvent B: Dichlorometh-	Figure 1. The reaction formula of the porphyrin sample.
Flow Rate	25 ml/min		1200 001 100
Sample Load	200 mg		1080
	Column volume (CV)	% Solvent B	20 720 00 radio 00 r
	0	12	480 Target product 40 %
Cradiant	3	12	
Gradient	6.3	37	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	12	40	cv
	22	95	Figure 2. The flash chromatogram of the porphyrin sample.

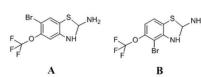
Sorbtech TLC Method Development

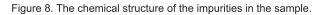
TLC can be an efficient, powerful, and cost-effective approach to develop methods for downstream chromatographic analysis, such as HPLC, Flash, and Gravity column separations. Use TLC to quickly check the purity of recovered fractions or to continually monitor reaction rates in a process.

Use our kits to quickly establish method parameters or to further optimize a current separation method. We offer several kits to aid in your search for optimization or better knowledge about a reaction.

Available Sorbtech Method Kits:

- General Method Intro Kit: Contains 2 each of 6 unique Silica coated plates: C2, C18, NH2, CN, Diol, and nano-silica. Each plate is 10×10 cm with a UV254 indicator and glass backing.
- Flash Method Development Kit: Includes 2.5 x 7.5 cm Silica plates with UV254 indicator glassbacked, plus Rocket TLC development chamber with detailed instructions on how to use to determine Flash run conditions.
- Rocket TLC Development Chamber- Saves up to 75% solvent usage with expedited development/migration time of minutes as compared to standard development tanks.




The Purification of the Synthetic Intermediates of Drugs

The reversed-phase (RP) separation mode is widely used in the separation and purification of weak polar or non-polar compounds. In this application note, a 330g sized Purity Flash C18 cartridge was used for the synthetic intermediates of a specific drug.

Figure 7. The chemical structure of the target product.

Experimental setup:

Instrument	SepaBean™ Automate	d Flash System	
Cartridges	420g Purity Flash Cartr gel, Premium Rf (100Å, Cat.#: CFC-73646-330-		
Wavelength	220 nm; 254 nm		
Mobile Phase	Solvent A: Water Solver	nt B: Methanol	
Flow Rate	50 ml/min		
Sample Load	5 ml (1.6 g)		
	Time/Min	% Solvent B	
	0	30	
Gradient	53	75	
	63	75	
	73	90	

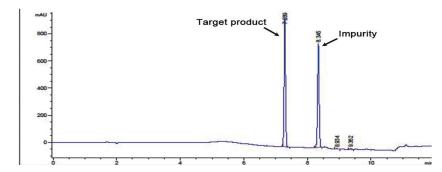


Figure 9. The chromatogram of the sample by HPLC analysis.

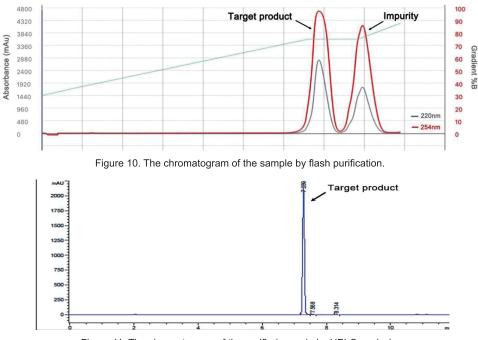
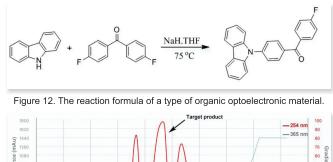


Figure 11. The chromatogram of the purified sample by HPLC analysis.

10

Sorbent Technologies, Inc. | www.sorbtech.com | 770-936-0323 | 5955 Peachtree Corners E, Norcross, GA 30071



The Application in the Field of Organic Optoelectronic Material

Organic optoelectronic materials are a kind of organic materials having photoelectric activities, which are widely used in various fields such as light-emitting diodes (LEDs), organic transistors, organic solar cells, organic memory, etc. Organic optoelectronic materials are receiving more attention from researchers because of its inherent advantages. To ensure better performance in the later stage, it's necessary to improve the purity of the target compound as much as possible in the early stage of synthesizing organic optoelectronic materials. In this application note, the SepaBean[™] instrument combined with the Purity Flash purification cartridges were applied to the organic optoelectronic material sample for fast preparation of the target product.

Experimental setup:

Instrument	SepaBean™ Automated Flash System		
Cartridges	40g Purity Flash Cartridge - LP, granular silica gel, Premium Rf (60Å, 40-75 μm, 12/ pk) Cat.#: CFL-52500-040-12		
Wavelength	254 nm (detection), 365 nm (monitoring)		
Mobile Phase	Solvent A: N-hexane Solvent B: Ehtyl acetate		
Flow Rate	15 ml/min		
Sample Load	1.0 g		
	Column volume (CV)	% Solvent B	
	0.0	0	
Gradient	15.0	15	
	16.5	80	
	18.0	80	

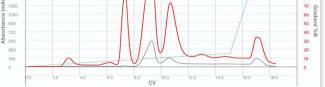


Figure 13. The flash chromatogram of the sample.

The Application in the Field of Small Molecule Synthesis

In this application note, the sample came from the last step of a specific synthetic reaction. As a start, a 33g Purity Bonded Series C18 cartridge was used for a small amount of sample loading. Based on the separation result, a 120g Purity Flash C18 cartridge was used for scale-up sample purification. The results showed good separation efficiency and great reproducibility for Purity Flash cartridges.

Experimental setup:

-			
Instrument	SepaBean [™] Machine		
Cartridges	33g Purity Flash Cartridge, C18 spherical silica gel, Premium Rf (100Å, 20-45 μm, 1/pk) Cat.#: CFC-73646-025-1	155g Purity Flash Cartridge, C18 spherical silica gel, Premium Rf (100Å, 20-45 μm, 1/pk) Cat.#: CFC-73646-120-1	
Wavelength	220 nm, 254 nm		
Mobile Phase	Solvent A: Water Solvent B: Methanol (0).1% ammonia water)	
Flow Rate	25 ml/min	40 ml/min	
Sample Load	1.3 ml (162 mg)	8.0 ml (1.0 g)	
	Time/Min	% Solvent B	
	0	10	
	20	40	
	33	40	
Gradient	35	46	
	50	46	
	70	60	
	72	90	
	85	90	

Figure 14. The last step of a specific synthetic reaction. The chemical on the right side is the target product.

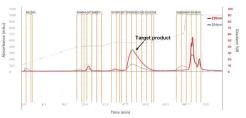


Figure 15. The flash chromatogram of the sample at small loading amount by a 25 g flash cartridge.

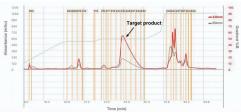


Figure 16. The flash chromatogram of the sample at scale-up loading amount by a 125 g flash cartridge.

12

The Application of ELSD in the Purification of Non-UV Absorbing Compounds

In chemical synthesis, many compounds are absent with UV absorption structures. To purify these compounds, commonly used UV detector can't meet the requirement of real-time monitoring for the eluting procedure. In this application note, a pharmaceutical intermediate was utilized as the sample to show the application of ELSD in sample purification.

Figure 17. The chemical structure of a pharmaceutical intermediate.

Experimental setup:		
Instrument	SepaBean™ Automated Flas	sh System
Cartridges	12g Purity Flash Cartridge - Ι Premium Rf (60Å, 40-75 μm, Cat.#: CFL-52500-012-18	
Detector	UV: 254 nm; 280 nm	
Mobile Phase	Solvent A: Petroleum Ether S	Solvent B: Ethyl Acetate
Flow Rate System: 30 mL/min Split flow for ELSDL 0.5 mL/min		nin
Sample Load	600 mg	
	Time (CV)	% Solvent B
	0	0
	11	18
Gradient	15	18
	21	34
	24	34

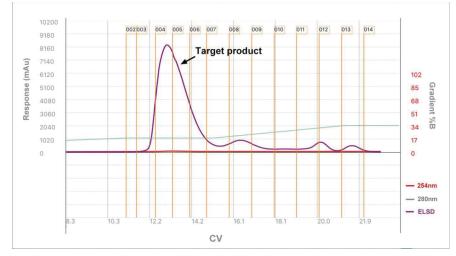



Figure 18. The flash chromatogram of a pharmaceutical intermedia

Puritytm Prepacked Flash Cartridges

Premium Rf[™] Silica Gel – the best chromatographic silica gel in the marketplace

Purity™ Flash Cartridges Increase Lab Efficiency		
Adsorbent	Max. Pressure	Resolution
Granular Silica Gel (Econo), Premium Rf, 60A, 40-75um	300 psi	***
Granular Silica Gel, Premium Rf, 60A, 40-75um	400 psi	***
Granular Silica Gel, Premium Rf, 60A, 20-45um	400 psi	****
Spherical Silica Gel, Premium Rf, 70A, 40-75um	400 psi	****
Spherical Silica Gel, Premium Rf, 70A, 20-45um	400 psi	****
C18 Spherical Silica Gel, Premium Rf, 100A, 40-75um	400 psi	****
C18 Spherical Silica Gel, Premium Rf, 100A, 20-45um	400 psi	****

FEATURE	USER BENEFIT
Narrow particle size distribution	Greater resolution and reproducibility
Minimal fine particles below the nominal range	Lower backpressures and faster run-times
Uniform porosity	Higher loading – which means you can load up to 30% more than other columns
Small pore volume	High bulk density – which means more silica in the same column – which leads to higher loading. Lower "dead" volume. Saves on solvent and minimizes band broadening
Minimal small pores	Lower risk of trapped solute in pores – which means you don't lose your expensive sample
Low metal content	Low interference of analytes (High Purity - >99.99% SiO2) and (Total metal content \sim 10 ppm) – which means you won't have peak tailing with certain types of molecules.

Sorbent Technologies Address: 5955 Peachtree Corners E I Norcross, GA 30071 Website: www.sorbtech.com Email: info@sorbtech.com

For more information or to request a demo, please call us at 770-936-0326

